
Developing a Text-Based MMORPG to Motivate Students in CS1

Richard Barnes and Maria Gini
Department of Computer Science and Engineering

University of Minnesota
4-192 EE/CSci, 200 Union St. SE, Minneapolis, MN 55455

{barnes,gini}@cs.umn.edu

Abstract

We present the outline of a class project in which entry-level
students in our CS1 course spent a full day developing a
text-based massively multi-player online role-playing game
(MMORPG) using Scheme. We describe briefly our CS1
course, the specifics of the game we asked students to im-
plement, and the project organization. Comments from the
students about their experience are also presented. Most stu-
dents felt that the project was a beneficial learning experi-
ence. The project was organized as part of a larger multi-year
effort to increase student learning and student participation.
Class performance shows that more students have completed
the course and have obtained higher grades than in the past,
providing support to the educational value of this project and
the other active learning opportunities we have used during
the semester.

Project Rationale
Games and AI are often used to attract students to computer
science (see, for instance, (Rao & Mitra 2008; Kumaret al.
2008). It is common wisdom that students gain confidence
by hands-on manipulation, and by seeing concrete effects
of their work. Hands-on programming experience increases
self-confidence (Beyeret al. 2003) and improves students’
self-perception about computer science and career goals.

The participants to the project we describe here were all
entry-level students taking their first class in the computer
science program. At this point, the curriculum tends to be
somewhat discouraging because there is a discord between
the projects the students envision themselves doing and what
they are capable of. This project is meant to help bridge this
gap.

The project was scheduled towards the end of the semester
and was designed to include many of the constructs and ex-
amples students learned and worked on in their weekly labs.
In this way, the project was meant to put to practical use
what had previously been merely exercises.

Finally, the project was designed to provide fewer step-
by-step directions than the labs to give the students the lib-
erty to conceive and develop their own ideas using what
they’d been taught rather than simply demonstrating their
knowledge of the course material. Group cooperation was
an essential part of the project, since students were divided
into groups, each group dealing with a different aspect of

the project. Cooperative learning is known to enhance learn-
ing (Johnson & Johnson 1988).

Our CS1 course
Our CS1 course is modeled after the MIT 6.001 entry-level
computing course. Our students are expected to take this
course in their freshman year, but some take it in the sopho-
more year. The course is offered with a single section per
semester. The students are divided into smaller groups (30-
34 students each) for a 2 hours/week lab, where they work
on programming assignments in pairs with the help of the
TAs. The course enrolls 100-150 students per term.

The course offers an introduction to the fundamental
principles of programming and to different programming
paradigms, with emphasis on the design of abstract data
types and recursive algorithms. The course teaches students
how to think as computer scientists, by teaching the pro-
cess of decomposing problems into simpler problems, and
of controlling program complexity by using abstractions that
hide implementation details.

The course does not assume any prior programming
knowledge. Students come to the class with very different
backgrounds. Some have never programmed, some have
significant programming experience, but they have rarely
gone beyond the mechanical understanding of how to write a
program to reach an understanding of how to organize their
thinking process.

The language taught in the course, Scheme, is concise, has
clean and consistent semantics, and it is perfect to teach the
students how to think. An additional reason for the choice of
Scheme it that it is a language unknown to most of the stu-
dents taking the course. This provides a more even starting
point for all the students in the course. However, the students
are often reluctant to put a significant effort into understand-
ing the material, since they do not see how knowledge of
Scheme will increase their short term marketability.

In 2005 we were selected as one of the twelve teams at
the University of Minnesota which participated in a campus-
wide three-year long project supported by the Bush Founda-
tion on “Promoting Student Learning in Large Classes.” In
the first year of the project we assessed the current situation
and started discussing what types of interventions were ap-
propriate for the course. We wanted to maintain the rigor of
the course and its contents, but find ways of engaging the



students more in the learning process (Smithet al. 2005).
In the second year we experimented with a variety of ac-

tive learning techniques, ranging from different small group
activities in class, to doing a lab using the Sony robot dogs
AIBO (Chilton & Gini 2007), to placing a strong emphasis
on problem-based learning (Prince 2004) and other forms of
active-learning.

In the last year, we continued experimenting with what
worked well the previous year and added the project we are
presenting here. We assessed overall student performance in
the three semesters and noticed a clear improvement, as we
will describe later.

MMORPG Synopsis

MMORPGs (massively multi-player online role-playing
games) are probably best exemplified byWorld of Warcraft
and also, to an extent,Second Life. Although they are
best known today as being graphical, they date back to the
70s in their text-based form, known as MUDs, MUCKS,
or, more generally, MU*s. They are akin in nature to the
board game Dungeons and Dragons. The MMORPG offers
a persistent, on-going world to which players connect and in
which they develop a character through interactions (trading,
chatting, fighting, etcetera) with other characters and NPCs
(non-player characters), as well as with the environment of
the world. The environment stems from the MMORPG’s
theme - generally medieval fantasy. The MMORPG, then,
is a mirror of our own world idealized for the purpose of
game-play.

Multiple studies have been conducted to understand
the motivations of players of online games (see, for in-
stance, (Yee 2006)). Most often MMORPG are used in
the classroom as a tool to support learning and build on-
line communities (see, for instance, (Steinkuehler 2004;
Hughes & Scott 2005; Childress & Braswell 2006)), not as
a way to learn programming. In (Wadley & Sobell 2007)
a study is reported in which students were asked to build
database tables and procedures for a MMORPG as way
of learning about client-server architectures and relational
databases. The course was a final year undergraduatecourse.
The course in which we built the MMORPG we report in this
paper was a freshman course.

Games are also often used in Artificial Intelligence
courses, to build AI into games. Our course did not in-
clude any material on Artificial Intelligence, and the part of
the game the students developed did not have any AI in it.
We did this project as an experiment to engage students in
more complex programming and to prepare then for future
AI work. The fact we chose a game appealed to many stu-
dents who were intrigued by the idea they could build an
entire game.

What an MMORPG Looks Like

Connections to an MMORPG are made with a telnet client.
Upon connecting, a player is prompted for a name and pass-
word after which they wake up in the games world. This
may appear as follows:

You are presently standing in the common room of a
tavern. In one corner, a large fire blazes in a stone
hearth. Scarred oak tables are scattered throughout the
room. The atmosphere is hazy with tobacco smoke.
Exits: {E}xit, {Up}stairs,{K}itchen
Objects: A beer mug, a sword, and gold (5).
With: Bob, the Barkeep; Frank, the vicious outlaw.

The game may be navigated by taking exits from one
room to the next (some of which may not be visible). Ob-
jects may be acquired for profit (five gold pieces), health
(beer), or other uses (swords). The inhabitants of the game
may be human players (such as Frank), who lead interesting
lives filled with adventure and heroic feats; or non-player
characters such as Bob, who generally fill necessary, yet bor-
ing, roles. There is no definite way for a player to distinguish
between a real human and an NPC.

Why use an MMORPG?
First, why use a game? Because games are meant to be fun
and everyone has an intuitive idea of what qualities are nec-
essary to produce an enjoyable gaming experience. One im-
portant property of games that contributes to their enjoyment
is a social element. MMORPGs allow an arbitrarily large
number of players to enjoy the game simultaneously, thus
everyone who participates in building the game can play the
game.

Since all our students are familiar with games and, if only
in passing, with MMORPGs, the idea of the game is easily
conceived. Since the game models the real-world, the con-
tents of the game are also easily conceived. Thus, the only
thing left for the students to do is to translate already familiar
elements into code. An additional benefit of this project is
that it is open-ended enough to include students of all skill-
levels. As an example envision a taxi cab. It is simple to
relay, with appropriate formatting, one player’s speech toall
the other passengers; it is more difficult to parse this speech
for possible destination commands given to an NPC cabbie.
More complex situations are conceivable since NPCs and
other elements of the game may be subject to the Turing
test.

Project Outline
Why a single day?
Planning to do the project in a single day was purposeful.
We felt that doing so would provide the students a bet-
ter view of the big picture, maximize their excitement, and
promote better attendance by providing less opportunity for
scheduling conflicts. Additionally, planning for only a single
day meant that the project would not interfere to any great
degree with the students’ normal schoolwork.

Preparation
A wiki page (at https://wiki.umn.edu/view/CsGame1901/)
for the project was set up and students were directed to
it. The page included surveys to determine the theme of
the project and what time we would start work on it (on
a Saturday morning; the students were enthusiastic and



chose 8:00am). The wiki had a break-down of various sub-
projects and descriptions of what sorts of activities those
projects would involve. Some of our sub-projects were:
server-coding, world building, combat systems, storyline,
scripting-language coders, economics, database-coding,and
policy. The wiki also included a list of design considera-
tions. These questions were meant to cover every aspect of
the game from beginning to end along every possible route
of development. Although this was clearly impossible, hav-
ing such a list of questions encouraged students to develop
their own and, when the questions were applicable, they en-
couraged independent work freeing the teachers up to con-
centrate on other problems. The essential point of the prepa-
ration was to eliminate as much as possible the need to con-
sider anything but development on project day.

Project day
We met at 8:00am as a large group in a lecture hall and dis-
cussed games in general, gradually focusing to what quali-
ties our game needed to include. We then had the students
divide themselves initially into teams to tackle critical sub-
projects (e.g. server and database coding) with the plan that,
as they completed these they would move to less important
work (e.g. economics and policy). Abstraction was criti-
cal because many of the functions which various teams used
were not coded till much later in the day. This also meant
that the students had no way to test their code till the game’s
critical components had not only been coded, but debugged
as well. The students were instructed to keep a running
log on the wiki and to post to other teams’ wiki pages for
communication. We had scheduled twelve hours of coding,
but, for reasons which will be discussed below, stayed for
fourteen. The day included a scheduled pizza lunch and no
scheduled supper. Lunch was a good break and the students
used it as an opportunity to discuss their work with other
teams.

Follow-up
In the end, there were eight students who remained (out of
more than 40) till 10:00pm debugging and combining all the
other teams’ code. These were generally average to above-
average students, but, universally, they wanted to be there.
This was so much the case that we continued the project
for another week and a half during which the students met
without any guidance.

Analysis
Leadership
Students developed their team leadership spontaneously.
This process generally happened quickly and effective lead-
ers emerged. Small, coding-intensive teams were generally
led by the most skilled programmer of the team. This is
likely because this programmer was able to distill from the
many available options those that were important and de-
velop, independently, solutions. Larger teams developed ad-
ministrative leaders who facilitated communication within
their sub-groups. The lack of communication between sep-
arate teams was a problem and will be discussed shortly.

Once leaders had emerged, the project could be directed
through them. The leaders had a more intimate knowledge
of their team’s work than the teachers could and the teachers,
with an intimate knowledge of the “big picture,” were able
to suggest appropriate modifications.

A Single Day
The students’ comments were divided as to whether a single
day was the best choice. The reasons cited for this generally
indicate that time lost organizing teams, developing leaders,
defining problems, and forming new teams to fill develop-
ment gaps could be gained back by running the project over
two days. We contest this: although the follow-up work was
publicly announced and the entire class was invited to join
in on it, only eight students took part. Ameliorating other
pitfalls (mentioned below) will probably not eliminate the
aforementioned problems, but it may make a second day un-
necessary.

Pitfalls
There were five major pitfalls in the organization of the
project: (1) lack of comfort with abstraction, (2) lack of a
skeleton for the code, (3) team size, (4) inter-team commu-
nication, and (5) a failure to familiarize students with text-
based MMORPGs.

1. Although we had used abstraction throughout the
semester, many of the students still felt uncomfortable
writing code using self-defined functions the contents of
which they would not code themselves. This was espe-
cially so when no one had yet chosen to do the coding.

2. The project began without a single line of code having
been written beforehand. Our server and database coders
dealt well with this; the server coders learned TCP/IP
commands and produced a bug-free product in six hours,
but, on the whole, having skeleton code would have been
valuable. Since it easy to predict the essential components
of the project, we think that a dictionary of these functions
should be provided so that those students uncomfortable
with abstraction have something to work with and so that
these crucial elements are coded in a timely fashion. The
degree to which this skeleton is fleshed out is variable.
Not having a fully-functioning server meant that some of
the most capable students were absorbed by that prob-
lem. They learned from the experience, but the game, as
a whole, did not progress as far as it might have had they
been free to work on other problems. This question is fun-
damental to the project as a whole: should programming
the game involve coding its engine or merely developing
in-game systems? Both lead to learning, but one presents
a greater chance of “completion” and its attendant satis-
faction.

3. Team size was another problem as most of our teams
tended to be too large. Those students who worked in
small teams on a problem tended to report more positive
experiences, as did those students who led teams - regard-
less of the size. A balance must be struck between forcing
a problem on the students and allowing them to all tackle
the problem which seems the most enjoyable.



4. The students’ comments uniformly cited lack of commu-
nication as the worst problem. Many of the teams at-
tacked their problems and were excited about what they
were individually doing, but forgot to communicate their
work to others. The divisions between teams contributed
to this: although it made sense from a coding perspective
to separate the combat systems teams from the histori-
cal team, this didn’t make sense from a plot perspective.
Each team can be thought of as being part of several other
teams and it is important to appreciate this and point it
out. We had anticipated that providing the students with
a wiki would promote organized communication, but up-
dating and reading the wiki proved both time-consuming
and boring. People leaving the project also presented a
problem, often setting teams back. An early warning to
students about the planned project dates is essential to
avoid this.

5. Although we were correct in anticipating that using an
MMORPG would aid students in conceptualizing the
project, we did not anticipate the necessity of the students’
playing text-based MMORPGs. Although we had sug-
gested that they do this and provided links for them (to
Redwall MUCKandMerentha), few students took advan-
tage of this. We realized, belatedly, that the text-based en-
vironment must be experienced before students can fully
appreciate its unique properties and visualize what makes
such an environment convincing to a player.

The nature of the labs the students had done earlier in the
semester did not adequately prepare the students for the dif-
ferent style of thought and action that would be necessary
for this project. Many of the above problems could perhaps
have been avoided by stating more explicitly this distinction:
that there would be few, if any, guidelines; that communica-
tion would be essential and have to be continuous; that they
must take the initiative and code boldly.

Student response

We have collected written comments in free form from the
students. Comments are very detailed, and include personal
opinions about their individual experience as well as detailed
suggestions on how to improve the project for future stu-
dents.

The students uniformly reported enjoying themselves and
learning from the experience. Many of the comments on
learning concerned learning the importance of teamwork,
the difficulty of establishing communication among teams,
and a better understanding on how to work on large-scale
projects. Many students mentioned a greater appreciation
for the difficulty of the development process. Many also
mentioned that it was the first time they used a wiki.

Several students were pleased that Scheme, which had
hitherto seemed useless, suddenly had a real-world appli-
cation.

Many of the comments mentioned the project’s relation to
the “real world.” The students felt that their experience was
indicative of how things really worked and were grateful for
the opportunity to experience that.

Overall student performance
It is hard to assess the impact of this specific project on the
overall performance of the students in the class, since mul-
tiple other active learning opportunities have been included
in the class.

In Spring 2007 we repeated some of the activities we
did in Spring 2006, i.e short quizzes in preparation for the
exams, written homeworks, pop quizzes, a lab using the
Sony dogs AIBO to engage the students in a collabora-
tion/competition activity (Chilton & Gini 2007), and used
a student management team (Nuhfer 2003). We added mul-
tiple ways for students to get bonus points by solving addi-
tional problems. Many students took advantage of the op-
portunity to improve their grade, and, as a result, learned
more. We have also added this game project that student
could do for some limited extra credit. The number of stu-
dents who participated (40-45) was significantly higher than
what we expected.

An indication of the importance of active learning comes
from the grades of the students in the course over the three
semesters we worked on assessing and improving student
learning.

The grades, as indicated in the table, are higher than in the
past. Many more students attended the lectures all the way
to the end of the semester, which might have contributed
to their improved performance. All the students who com-
pleted the class in 2007, except 1, passed with a grade of C
or better and only 3 students failed the class, compared to
the 26 who failed in 2005.

Spring 05 Spring 06 Spring 07
A 45 56 67
B 40 25 36
C 23 21 16
D 4 3 0
F 26 11 3
Total 138 116 122

Table 1: Grades of the students in the course over three
semesters. The grades are grouped by including in the same
line +/- grades.

Conclusions
We have presented a project where beginner students were
engaged for a full day of programming to build a MMORPG
using Scheme. Students were given limited directions and
no software was prebuilt. Students had to use the knowledge
they acquired during the course and lots of teamwork and
coordination to pull this off.

We feel that the project has merit and could serve as a
useful tool in the course, in particular if a skeleton of the
game software is built, if the students are made comfort-
able with abstraction earlier, and if team sizes and goals are
more explicitly delegated. The project will be repeated in an
entry-level C++ course in Spring 2008 with the above mod-
ifications. We are considering using this project as a regular



project in the CS1 course, and extending it by adding some
AI in the undergraduate AI course.

Acknowledgements
We would like to thank the Bush Foundation for their sup-
port of the program to promote student learning in large
classes that made this project possible. We would also like
to thank Paul Baepler and J. D. Walker for their continuous
support and suggestions on how to improve our CS1 course,
and John Chilton for all his help in this project.

Work supported in part by the National Science Founda-
tion under grant DUE-0511304.

References
Beyer, S.; Rynes, K.; Perrault, J.; Hay, K.; and Haller, S.
2003. Gender differences in computer science students. In
Proc. of the 36th SIGCSE Technical Symposium on Com-
puter Science Education, 49–53.
Childress, M., and Braswell, R. 2006. Using massively
multiplayer online role-playing games for online learning.
Distance Education27(2).
Chilton, J., and Gini, M. 2007. Using the AIBOs in a CS1
course. InAAAI Spring Symposium – Robots and Robot
Venues: resources for AI education, 24–28. AAAI Press,
Technical Report SS-07-09.
Hughes, G., and Scott, C. 2005. No pain, no game: Use of
an online game to explore issues of online identity and the
implications for collaborative e-learning.E-Learning2(4).
Johnson, R. T., and Johnson, D. W. 1988. Cooperative
learning: Two heads learn better than one.Transforming
Education.
Kumar, D.; Blank, D.; Balch, T.; O’Hara, K.; Guzdial, M.;
and Tansley, S. 2008. Engaging computing students with
AI and robotics. InAAAI Spring Symposium – Using AI to
motivate greater participation in Computer Science. AAAI
Press, Technical Report SS-08-08.
Nuhfer, E. B. 2003. Manual for student management
teams. Idaho State University.
Prince, M. 2004. Does active learning work? a review of
the research.Journal of Engineering Education223–231.
Rao, T., and Mitra, S. 2008. Synergizing AI and OOSE:
Enhancing interest in computer science through game-
playing and puzzle-solving. InAAAI Spring Symposium
– Using AI to motivate greater participation in Computer
Science. AAAI Press, Technical Report SS-08-08.
Smith, K.; Sheppard, S.; Johnson, D.; and Johnson, R.
2005. Pedagogies of engagement: classroom-based prac-
tices.Journal of Engineering Education87–101.
Steinkuehler, C. A. 2004. Learning in massively multi-
player online games. InProc. 6th Int’l Conf. of the learn-
ing sciences: Embracing diversity in the learning sciences,
521–528. Lawrence Erlbaum Associates.
Wadley, G., and Sobell, J. 2007. Using a simple mmorpg
to teach multi-user, client-server database development.In
2nd Annual Microsoft Academic Days Conf. on Game De-
velopment.

Yee, N. 2006. The psychology of MMORPGs: Emotional
investment, motivations, relationship formation, and prob-
lematic usage. In Schroeder, R., and Axelsson, A., eds.,
Avatars at Work and Play: Collaboration and Interaction
in Shared Virtual Environments. Springer-Verlag. 187–207.


