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A B S T R A C T

Solving inverse problems, performing sensitivity analyses, and achieving statistical rigour in land-
scape evolution models require running many model realizations. Parallel computation is necessary
to achieve this in a reasonable time. However, no previous landscape evolution algorithm is able
to leverage modern parallelism. Here, I describe an algorithm that can utilize the parallel poten-
tial of GPUs and many-core processors, in addition to working well in serial. The new algorithm
runs 43× faster (70 s vs. 3000 s on a 10,000×10,000 input) than the previous state-of-the-art and
exhibits sublinear scaling with input size. I also identify key techniques for multiple flow direction
routing and quickly eliminating landscape depressions and local minima. Complete, well-commented,
easily adaptable source code for all versions of the algorithm is available on Github and Zen-
odo.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Models can be used to help determine how landscapes are formed
and to predict their futures. However, doing so may require explor-
ing many possible governing equations and initial conditions (Tucker
and Hancock, 2010; Chen et al., 2014). To do this with statisti-
cal rigour may require millions of model realizations (Tucker and
Hancock, 2010; Braun and Willett, 2013). This computational cost is
exacerbated by the need for numerical stability and accuracy, which
often requires using small time increments and/or high spatial reso-
lutions (Iserles, 2009). Performing such computational experiments
in serial is not feasible.

Nodes with many-core CPUs and several graphics processing
units (GPUs) represent the state of the art and the future of high-
performance computing (Dongarra et al., 2011). However, current
landscape evolution algorithms are not designed to take advantage
of such machines. Here, I resolve this by presenting several imple-
mentations of a landscape evolution model designed to work in a
variety of parallel environments offering geoscientists a way to take
advantage of these systems.

The greatest speed gains I achieve stem from the use of GPUs.
In contrast with CPUs, GPUs execute individual tasks slower than
CPUs but are capable of performing the same task concurrently on
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thousands of unique data elements (Nickolls and Dally, 2010). Until
recently, programming both GPUs and multi-core CPUs was chal-
lenging due to the need for specialized programming languages;
however, industry-wide efforts to make parallelism more accessible
have led to standards such as OpenMP (Dagum and Menon, 1998)
and OpenACC (OpenACC Organization, 2017), which provide ways
of integrating parallelism into languages such as C++. The imple-
mentations I present here use these standards to make it easier
for non-specialists to adapt the accompanying source code to their
needs.

2. Methods

2.1. An example model

To demonstrate the techniques used in the new algorithm, I reim-
plement an O(n) implicit integrator developed by Braun and Willett
(2013) for the stream power equation. This is the most efficient
algorithm previously published for this purpose. I will refer to this
below as the B&W algorithm and use it to benchmark and verify
the new code. The new algorithm produces identical results to the
B&W algorithm and is also implicit in time. The design of the new
algorithm is similar to the B&W algorithm; differences between the
two will be described as they arise.
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Fig. 1. An example output of the landscape evolution algorithm: a nonlinear, self-
organizing system.

The design of the B&W algorithm imposes serious limitations on
parallelism and scalability; it is also limited to D8 flow routing. In
contrast, my new algorithm can fully leverage the power of mod-
ern CPUs, distribute work without load imbalance between many
cores, and effectively offload work to accelerators such as GPUs. The
algorithm produces outputs similar to that shown in Fig. 1.

The algorithm described here could be applied to many equations
governing the evolution of landscapes, such as those reviewed by
Tucker and Hancock (2010) and Chen et al. (2014). As a demonstra-
tion of the algorithm, I use the stream power equation. Whipple and
Tucker (1999), Royden and Perron (2013), and Lague (2014) further
explain the equation and show examples of its use while Campforts
and Govers (2015) explore numerical issues that may arise from it.
In the equation, the evolution of the elevation h of a point on a
landscape is modeled as:

∂h
∂t

= −KAm
(

∂h
∂x

)n

(1)

where K is a scalar whose value may be influenced by, for example,
lithology, channel width, and channel hydrology; A is the flow accu-
mulation or contributing drainage area; and m and n are scaling
constants. Solving the equation using the implicit (backwards) Euler
method coupled with Newton–Raphson iteration permits the use of
longer timesteps and leads to higher numerical accuracy than would
otherwise be possible (Braun and Willett, 2013).

The appropriate values for K, m, and n are debated. For
instance, theoretical analyses place n between 2

3 and 5
3 , but pos-

sibly higher than 2 (Royden and Perron, 2013). This uncertainty
can be dealt with, in part, through sensitivity analyses, though
this requires addition realizations of the model. Although values
of m, n = 1, 2 permit analytic solutions to Eq. (1) which accelerate
its solution, the methods developed here are general and apply to
any choice of values.

In the context of this paper, Eq. (1) is solved for all of the
cells in a grid of elevations. The equation is used to adjust
the elevation of an upstream cell based on the flow accumula-
tion at the cell, the elevation of its downstream neighbor, and
the steepness of the local gradient. If elevation of the down-
stream neighbor is not known, the equation will have too many
unknown variables and cannot be solved. Therefore, a boundary con-
dition is needed. Here, I achieve this by setting the grid’s perimeter
cells to a fixed base level; Braun and Willett (2013) discuss other
possibilities.

Since the elevation of the perimeter cells is known, Eq.
(1) can be solved for the cells adjacent to the perimeter
cells, and then the cells adjacent to those cells. This contin-
ues until all of the cells are calculated. Similarly, the cells at
the peaks of the elevation grid pass flow downstream. Thus,
a processing order is needed that allows cells to be pro-
cessed from upstream to downstream in order to calculate flow
accumulation and from downstream to upstream to adjust cells’
elevations. This paper presents techniques for obtaining such an
ordering in a parallelized way.

2.2. Algorithmic improvements

2.2.1. Breadth-first ordering
The key difference between the new algorithm and B&W is the

topology of the flow graph (the graph traced by flow descending from
one node to the next) as illustrated in Fig. 2. The new algorithm per-
forms a breadth-first traversal while the B&W algorithm performs a
depth-first traversal.

Fig. 2. Comparison of traversals/orderings.
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The traversals are formed by building a list of source nodes
from which to begin. These nodes are later removed from the
list and their neighbors added; this process repeats. The order in
which nodes are added and removed determines which traversal is
performed.

The B&W algorithm’s depth-first traversal is built using a stack
ordering (Fig. 2a) in which the first nodes to be added are the last
nodes to be removed. The first of a node’s upstream neighbors is vis-
ited, and then the first of that node’s upstream neighbors, and so on.
When there are no more upstream neighbors, the algorithm back-
tracks one level and processes the next upstream neighbor, if there
is one.

In contrast, the new algorithm’s breadth-first traversal is built
using a queue ordering (Fig. 2b) in which the first nodes to be added
are the first nodes to removed. All of a node’s upstream neighbors
are visited, then all of the upstream neighbors’ neighbors and so on.
This means that nodes are visited in an expanding wave (shown as
dashed lines in the figure) from whatever nodes are used to initiate
the traversal.

In both orderings, nodes that are upstream or downstream of each
other cannot be processed in parallel since information from one
node is needed to determine properties of the other.

The breadth-first traversal provides an easy route to parallelism.
The expanding wavefront of the traversal groups nodes into “levels
”, as denoted by the dashed line in Fig. 2b. Though levels must be
processed sequentially, the nodes in each level can be processed in
parallel because they are causally independent.

Effectively parallelizing a depth-first traversal is known to be a
difficult problem (Reif, 1985). To see why, consider Fig. 2a. One par-
allel thread could execute Node 2 and its upstream nodes while
another could process Node 5 and its upstream nodes; however, this
means that the first thread would have three nodes to process while
the second thread would have four. One way to prevent such load
imbalance is to launch a new parallel task every time the flow graph
branches. However, this is not a good solution: there is a significant
overhead to starting new parallel threads (Bull et al., 2012) and, since
each task would process a single node, the overhead of starting a task
is likely to exceed the work done by that task. Another potential solu-
tion is to only launch tasks when there are large branches in the flow
graph. But this begs the question of how large such a division should
be and how long it would take to determine the size of branches. Put
simply: parallelizing a depth-first traversal takes more time than it
saves.

Fig. 3 illustrates the foregoing on actual data from the empirical
tests described later in the paper, showing the topology and timing
of four parallel threads executing the Erosion step of the algorithm
(Section 2.5.7).

The breadth-first traversal consists of levels in which many nodes
can be processed in parallel (Fig. 3b). The threads process 70, 71,
74, and 74 nodes each; the first thread has to wait while the last
two threads process four additional nodes. This good load balanc-
ing means that full parallelism can be used throughout the traversal
leading to rapid completion (Fig. 3d).

In contrast, as Fig. 3a shows, the depth-first traversal initially has
a high degree of parallelism, equal to the number of edge nodes of
the elevation model. However, many of the chains of interconnected
nodes (these are known as trees) are small. As a result, much of
the available parallelism is quickly exhausted until a single thread
is operating on a single, usually large, tree (the dark red portion of
Fig. 3c). In this example, the threads process 48, 51, 85, and 105 nodes
each and the first two threads must wait while the last thread pro-
cesses 57 additional cells. Such waiting represents a lost opportunity
for parallelism and acceleration.

The type of traversal used also affects which portions of the ele-
vation grid a parallel thread operates in. In the depth-first traversal
threads tend to hop around to different parts of the grid (Fig. 3e)

Fig. 3. Stack vs. queue: illustrated on a larger example using four threads. See
Section 2.2.1 for details. Fig. 2 shows a smaller example for which the algorithm is
explained.

while in the breadth-first traversal the grid is divided more or less
evenly between the threads (Fig. 3f).

2.2.2. Local minima
It is often desirable to calculate flow directions only after

internally-draining regions of a digital elevation model such as
depressions and pits (see Lindsay, 2015 for a typology) have been
eliminated. This ensures that all flows can reach the edge of the
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model. Depressions may arise spuriously from random initial condi-
tions, inaccuracies in floating-point mathematics (Goldberg, 1991),
or from features such as lakes and endorheic basins.

Depressions may be dealt with in one of three ways.

• They can be ignored. Over time, the model’s erosive processes
will either fill them or create outlets.

• The depressions can be filled to the level of their lowest out-
lets. This is the method recommended by Braun and Willett
(2013), who suggest a suboptimal O(N

√
N) algorithm. Opti-

mal theoretical and empirical performance for depression-
filling is achieved by the Priority-Flood algorithm identified by
Barnes et al. (2014b). On integer (or appropriately discretized
floating-point) data Priority-Flood runs in O(N) time. For gen-
eral floating-point data, it runs in O(m log m) time where m �
N. Recent work by Zhou et al. (2016) and Wei et al. (2018) has
helped to minimize the wall-time. For larger models, Barnes
(2016) presents an optimal parallelization of Priority-Flood.

• Depressions may also be breached by cutting a channel from
a depression’s pit cell(s) to some point beyond its outlet, as
detailed by Lindsay (2015).

The filling of depressions may result in flat regions where there
is no locally-defined flow direction. If desired, such regions may be
resolved either (a) as part of Priority-Flood (Barnes et al., 2014b) or
(b) by routing flow both away from higher terrain and towards lower
terrain (Barnes et al., 2014a).

2.2.3. Larger models
For truly large elevation models, Barnes (2016) and Barnes (2017)

describe optimal parallel algorithms for performing depression-
filling and flow accumulation. These algorithms can process trillions
of cells in less than an hour using only modest computational
resources. Although such grids are presently larger than those used
in the context of landscape evolution modeling, they may be of
interest in the future.

2.2.4. Multiple flow directions
The B&W algorithm uses the D8 flow router (O’Callaghan and

Mark, 1984; Mark, 1987). This models flow as descending along the
path of steepest descent from a cell to a single one of its neighbors,
provided there is a local gradient. This implies that the convenient
property that flows only converge and never diverge. As a result, each
cell has only a single receiver and Eq. (1) is solved with respect to
only a single pair of cells: one upslope, the other down. Multiple-
flow direction (MFD) routers (Freeman, 1991; Quinn et al., 1991;
Holmgren, 1994; Tarboton, 1997; Pilesjö et al., 1998; Orlandini et
al., 2003; Seibert and McGlynn, 2007; Orlandini and Moretti, 2009;
Peckham, 2013) break this assumption.

When multiple-flow directions are present a cell may have mul-
tiple downstream receivers. Recall that the boundary conditions of
the stream power equation require that the elevation of downstream
cells be known before the adjusted elevation of their upstream
neighbor can be calculated. Fig. 4 shows the flow graph of a set
of cells, some of which have more than one downstream neighbor.
Before the elevation of cells 2, 3, and 4 can be calculated, the ele-
vation of cell 1 must first be known. Similarly, the elevation of cell
2 must be known before that of cells 5 and 6 can be calculated.
Dashed lines are used to indicate the outward flow of information.
The lines imply a breadth-first (queue) ordering; they exactly match
the ordering of Fig. 2b. A similar wavefront cannot be constructed for
a depth-first (stack) ordering. Therefore, a breadth-first traversal is
necessary for using multiple-flow directions. Developing an efficient
implementation for this is beyond the scope of this paper, but I will
explore it in a future work.

Fig. 4. Multiple-flow directions. When multiple-flow directions are present a cell may
have multiple receivers. Cells are numbered in the order they should be processed.

2.3. Techniques for efficient parallelism

The following are a few notes on parallelism as it applies to
shared memory environments and how it influences the algorithms
described here.

Amdahl’s law (Amdahl, 1967; Krishnaprasad, 2001) says that a
program’s speed-up due to parallelism is bounded by the number of
available parallel units and the time the program must spend running
serial code. If the program spends half its time in serial code, then
even using infinite parallelism can only halve the run-time. In B&W
only a subset of the steps of the algorithm is parallelized; therefore,
as the number of parallel units increases, the run-time is dominated
by the serial steps. Here, I overcome this by parallelizing all steps.

The algorithm consists of several distinct steps. Each step involves
one or more loops over the elevation model, or portions thereof. These
loops may be parallelized when their iterations are independent of
each other. Such loops are denoted in the pseudocode with for‖. For
instance, during Uplift (Section 2.5.6, Algorithm 5) each cell is raised
by a constant factor. Since no cell needs information from any other
cell for this to happen, all the cells may be uplifted concurrently.

Sometimes, one or more steps may be executed concurrently. For
example, elevations are used to determine a processing order. Once
this order is known, Flow Accumulation (Section 2.5.5, Algorithm 4)
can be calculated without reference to the cells’ elevations. Similarly,
the Uplift subroutine (Section 2.5.6, Algorithm 5) does not depend on
flow accumulation. As a result, Flow Accumulation and Uplift can be
calculated at the same time.

The threads of a parallel program can proceed independently of
each other. The algorithms described here operate in a shared mem-
ory environment in which all parallel threads can access each other’s
memories. Without careful synchronization, two or more threads
may try to read from and write to the same memory location simulta-
neously. This is known as a race condition and leads to unpredictable
behavior and erroneous results (Chapman et al., 2008 p. 243).

A race condition can be avoided by either carefully synchronizing
threads or by using atomic variables. An atomic variable fuses a read,
modify, write sequence into a single, indivisible operation allowing
each thread to ignore the existence of the others (Chapman et al.,
2008 p. 90). Atomic variables are slower than normal variables, so it
is best to limit their use and, when they are used, to access them with
only a limited number of threads. Some algorithms are not possible
without atomics.

Both OpenMP (Dagum and Menon, 1998) and OpenACC
(OpenACC Organization, 2017)—two widely-used frameworks for
parallel programming—synchronize all threads at the end of each
parallel-for region, unless explicitly told not to. This is known as an
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implicit barrier. Barriers prevent steps from being run concurrently
and ensure that each step has the prerequisite information it needs
to run. Not every barrier can be eliminated, but removing those that
can is vital to obtaining good parallel performance. In my imple-
mentations, I remove many implicit barriers, allowing threads to
independently proceed through several steps before reaching a bar-
rier. For simplicity the pseudocode does not show this, but readers
can find full details in the accompanying source code.

The presence of if clauses within the inner loops of an algorithm
can lead to slowdowns by a factor of two or more. This happens
when the CPU fails to predict the value of the if statement and is
known as failed branch prediction. On a GPU, the different results of
an if statement must be serialized across groups of parallel threads;
this is known as warp divergence. Therefore, wherever possible, I try
to keep the inner bodies of loops simple. Those if statements that
remain in the code could not be eliminated.

2.4. Parallel frameworks

Parallelism can be realized in one of several ways. On a sin-
gle core, single-instruction, multiple-data (SIMD) instructions can
be used. These are CPU instructions that allow the same operation
to be applied to several contiguous data elements at once. The lat-
est such instruction set, AVX-512, can process 16 single-precision or
8 double-precision values at once. The B&W algorithm cannot take
advantage of SIMD since each thread operates on a separate tree of
the flow graph and each tree is inherently sequential. In contrast, the
new algorithm is designed to produce contiguous data.

On a CPU, OpenMP may be used to easily divide an array between
separate threads/cores. This permits the full power of a multi-core
CPU to be used. For example, the new Summit supercomputer at Oak
Ridge National Lab has 192 SIMD units per compute node, allowing
for up to 3072 single-precision calculations at once. In contrast, each
node has only 48 cores, which is the maximum parallelism that can
be applied by B&W.

GPUs, accessible via both OpenMP and OpenACC, provide an
avenue to even greater parallelism. The Nvidia Tesla V100 GPUs
used by Summit allow for approximately 163,840 parallel threads.
Each node has several such GPUs. But, as the above, leveraging this
parallelism requires the breadth-first design of the new algorithm.

2.5. The algorithm

The new algorithm models each grid cell as having receiver nodes
(those receiving flow from an upslope neighbor) and donor nodes

Fig. 5. Elevation nodes and their connections. Solid arrows denote flow along the path
of greatest slope while dashed lines denoted possible flow routes of lesser slope that
are modeled as having no flow. In this example, Nodes 4 and 9 are the donors of Node
7 and Node 6 is the receiver of Node 7. Node 5 is at the base level (marked by the solid
line) and its elevation does not change. Figure adapted from Braun and Willett (2013).

Table 1
Arrays used in the algorithm: a worked example. All arrays are zero-indexed. The
entries of the Cell row refer to the node labels in Fig. 5. Elevations are chosen arbitrar-
ily such that donor cells are higher than receiver cells, though the algorithm would
handle cells of the same elevation by eroding first one and then the other. Receivers
are calculated per Algorithm 1. Donors are calculated per Algorithm 2. Note that the
Donor array should be read as snaking down one column, then down the next, and so
on. Each column refers to one node’s entries and each node has Dmax entries, some of
which are unused (these are marked with dashes ‘-’). The Dnum array is the number
of entries of each column of the Donor array that are filled in; that is, the number of
Donors each cell has. The Order array is the order in which cells should be processed,
as determine by Algorithm 3; these values are the same as those shown in Fig. 2b.
The Levels array notes the 0-indexed beginnings of each level of parallelized cells, as
marked by the dashed lines in Fig. 2b. The flow Accumulation array shows the flow
accumulation of each cell, as determined by Algorithm 4.

Cell 1 2 3 4 5 6 7 8 9 10
Elev 3 2 3 4 1 2 3 2 4 3
Rec 2 5 2 7 X 5 6 5 7 8
Donor − 1 − − 2 7 4 10 − −

− 3 − − 6 − 9 − − −
− − − − 8 − − − − −

Dnum 0 2 0 0 3 1 2 1 0 0
Order 5 2 6 8 1 3 7 10 4 9
Levels 0 1 4 8 10
Accum 1 3 1 1 10 4 3 2 1 1

(those nodes which pass their flow to a downslope neighbor). Fig. 5
depicts these concepts.

Computers are able to read and access memory faster when ele-
ments are laid out and accessed in a regular, predictable fashion.
Such a layout allows processors to anticipate what memory will be
needed and fetch it preemptively (Drepper, 2007; Stark et al., 2017).
Gridded data in which cells connect with only adjacent neighbors in
the grid is optimal for this purpose and used here. Additionally, the
simplicity of this layout makes data transfer between the CPU and
GPU fast.

Table 1 shows a worked example of the arrays developed in
the following algorithms. Parallelism is tricky to get right, so well-
commented source code is provided as a reference.

2.5.1. Step 1: initialization
The algorithm requires several global variables. These are as

follows:

• Dmax: The maximum number of potential donors of any cell
in the elevation model. For a rectangular grid with horizontal,
vertical, and diagonal connections, this is eight.

• m̂: The exponent of the flow accumulation area in the stream
power equation (Eq. 1)

• n̂: The exponent of the local slope in the stream power equation
(Eq. 1)

• û: The rate of uplift
• NOFLOW: A constant indicating that the cell has no receiver
• 4: The tolerance for convergence in the Newton–Raphson

method
• K A factor influencing the rate of erosion, as described above
• Dx: The width of a grid cell
• Dy: The height of a grid cell
• Dt: The duration of a timestep

The algorithm requires one input array:

• Elev: The height/elevation model. This is a one-dimensional
array of size width by height. A particular cell at location (x, y) is
addressed as y • width + x.
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2.5.2. Step 2: determine receivers
Here, for each cell c, we determine which of c′s neighbors receives its flow, choosing the neighbor with the greatest downhill slope. The address
of the receiving neighbor is stored in the Rec array. Each entry in this array has a corresponding cell in the Elev array. Note that cells on the
perimeter of the model do not transfer flow. This step is conceptually identical to its counterpart in the B&W algorithm.

Algorithm 1. Determine receivers.

2.5.3. Step 3: determine donors
The Donors array is an inversion of the Rec array. Each cell in Elev corresponds to Dmax entries in this array, where each entry denotes the
address of a cell from which flow is received. Thus, the address of the cells from which a particular cell (x, y) will receive flow is given by
Dmax • (y • width + x) + k = Dmax • c + k for k ∈ [0, Dnum(c)), where Dnum(c) indicates the number of neighbors from which c receives flow.
In the B&W algorithm, each donating cell informs its receiver that it will be receiving a donation. This prevents parallelization because mul-
tiple donor cells may pass their information at the same time: a race condition. This could be prevented with atomic operations, but a more
performant solution is to have each cell identify its donors. Though this introduces an if statement, the cost of doing so is less than the cost of
using an atomic.

Algorithm 2. Determine donors.

2.5.4. Step 4: generate order
The Order array stores the addresses of cells in the order they are to be processed. Traversing the array from left to right corresponds to sweep-
ing the elevation grid from lower to higher elevations and ensures that a boundary condition is available for solving the implicit form of the
stream power equation. Traversing the array from right to left corresponds to sweeping the elevation grid from higher to lower elevations and
allows flow accumulation to be calculated. Each cell appears in this array once. The levels array contains indices corresponding to subdivisions
of Queue. The cells in each level may be processed in parallel.
At this stage the algorithm fundamentally differs from B&W: B&W uses a stack whereas I use a queue. From the perspective of graphs this is the
difference between depth-first and breadth-first traversal, respectively. The difference is illustrated in Fig. 2 and, again, in Fig. 3. As explained
in Section 2.2.1, this greatly increases potential parallelism.
To build Order, all of the cells without receivers (the mouths of rivers and pits of depressions) are first added to the queue. A note is made in
Levels of how many of these cells there are (see Table 1). Next, all of these cells’ donors are added and another note is made in Levels. And then
the donors of the donors are added, and so on.
This step is written as a serial algorithm (Algorithm 3). How it is parallelized depends heavily on the implementation, as described in Section 3.
One possibility is to have each parallel thread generate its own private ordering. An alternative is to use an atomic variable to synchronize the
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placement of cells into an ordering that all the parallel threads refer to. In both cases, minimal changes to the pseudocode shown in Algorithm 3
are necessary, as demonstrated in the accompanying source code.

Algorithm 3. Generate queue.

2.5.5. Step 5: compute flow accumulation
The Accum array stores the flow accumulation (also known as drainage area, contributing area, and upslope area) of each cell. As described by
O’Callaghan and Mark (1984) and Mark (1987), the flow accumulation A of a cell c is defined recursively as

A(c) = w(c) +
∑

n∈N (c)

a(n, c)A(n) (2)

where w(c) is the amount of flow which originates at the cell c; frequently, this is taken to be 1, but the value can also vary across an ele-
vation grid if, for example, rainfall or soil absorption differs spatially. The summation is across N (c), the set of all the cell c′s neighbors. a(n, c)
represents the fraction of the neighboring cell’s flow accumulation A(c) that is apportioned to c; this is zero for non-donor cells. Flow may be
absorbed during its downhill movement, but may only be increased by cells, so a is constrained such that for a given cell c,

∑
na(c, n) ≤ 1. In

the B&W algorithm each cell passes flow to its receiving neighbor. Here, each cell determines what flow it receives, similarly to how Donor
(Section 2.5.3) cells were determined. This permits flow accumulation to be parallelized across each level of the queue (see Fig. 3b).

Algorithm 4. Flow accumulation.
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2.5.6. Step 6: uplift
Tectonic uplift is incorporated in a straightforward manner: every cell is elevated at some rate û. Boundary cells, commonly edge cells, are
excepted: their elevation is fixed. Note that parallelism is still trivial if uplift varies spatially. This step is performed the same as in the B&W
algorithm.

Algorithm 5. Uplift.

2.5.7. Step 7: calculate erosion
Finally, the stream power equation can be solved via the implicit Euler method using Newton–Raphson iteration. Note that, due to the new
breadth-first topology, the cells within each level are neither receivers nor donors of each other. More importantly, there is no causal con-
nection between them. This means that all of the cells in a level can be executed in parallel, as in Algorithm 6, Line 2. Note that the tolerance
check on Line 11 could be replaced with a fixed number of loops if the maximum number required were known. The ordering developed in
Section 2.5.4 ensures that the information needed by the boundary conditions of the implicit equation is always available.

Algorithm 6. Calculate erosion.

2.5.8. Rinse, repeat
All of the above steps, excluding initialization, are repeated as

many times as necessary until the desired interval of time has been
simulated.

2.6. Test setup

2.6.1. Implementations
For testing, I have developed the following implementations:

• B&W: The B&W serial algorithm described by Braun and
Willett (2013)

• RB: A serial version of the new algorithm
• B&W+PI: A fully parallel version of the B&W algorithm
• RB+PQ: A fully parallel version of the new algorithm
• RB+GPU: The new algorithm adapted for use with a GPU

Complete, well-commented, easily-adaptable source code, an
associated makefile, and correctness tests are available at https://
github.com/r-barnes/Barnes2019-Landscape and on Zenodo (Barnes,
2019). The code is written in C++ using OpenACC for GPU accelera-
tion and OpenMP for multi-core CPU acceleration. In addition to the
implementations listed above the source code contains several inter-
mediate implementations to help readers understand the technical
choices that led to the current design. The code constitutes 3304 lines
of code spread across several implementations (averaging 367 lines
of code per implementation). 42% of the lines are or contain com-
ments. All algorithms were targeted to the native architecture of the
test machines and compiled using GCC (except where noted) with
both full optimizations and “fast math” enabled, as described in the
makefile. This code can be adapted to maximize performance across
an array of environments that may be available to a reader: serial,
multi-core, or GPU-enabled machines.

Minimal effort has been put into low-level optimizations. This
is intentional: the code here is meant to be accessible to any geo-

https://github.com/r-barnes/Barnes2019-Landscape
https://github.com/r-barnes/Barnes2019-Landscape
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Fig. 6. Timing comparisons for all implementations for two input sizes.

scientist comfortable working with C, C++, or other lower-level
languages. OpenMP and OpenACC have been used for parallelism
because they are easier to learn and use than more expressive accel-
erator frameworks such as OpenCL and CUDA. Scientists unfamiliar
with these languages and concepts will still be able to make use
of the code: extensive documentation and a straightforward cod-
ing style should allow manipulation of key elements without a full
understanding of the code.

2.6.2. Test environment
Two machines have been chosen to be reflective of the resources

available to users of CPU-only HPC systems or those including GPUs.
Comet, a supercomputer managed by XSEDE (Towns et al., 2014),
was used for CPU timing tests. Each node has two 12-core Intel
Xeon E5-2680v3 CPUs with 128 GB DDR4 RAM. SummitDev, a super-
computer managed Oak Ridge National Lab’s Leadership Computing
Facility, was used for GPU timing tests. Each node has two 10-
core IBM POWER8 CPUs with each core supporting eight hardware
threads (160 threads total). Each node has 500 GB DDR4 memory and
is attached to four NVIDIA Tesla P100 GPUs. Running the CPU code
on SummitDev yielded wall-times similar to Comet, though optimiz-
ing CPU code specifically for SummitDev is beyond the scope of this
paper.

2.6.3. Test setup
Square elevation rasters of several sizes were generated. Each cell

of the rasters was initialized to a random value drawn from a uni-
form distribution in the range [0, 1]. Seed values were set so that all
implementations at a given size used the same data, allowing for safe
intercomparison.

All tests were run for 120 timesteps to better extract the effect of
input size on wall-times. This is sufficient to reach steady-state for
small inputs, but additional iterations would be necessary to achieve
convergence on larger inputs.

2.6.4. Correctness and accuracy
The outputs of all of the implementations have been compared

and are identical. This suggests that the implementations are cor-
rect. The source code includes a script that performs this comparison
automatically.

However, the numerical accuracy of the integration method
should be considered. Campforts and Govers (2015) demonstrate
that the implicit first-order finite-difference method used by Braun

and Willett (2013) and accelerated here is subject to numerical dif-
fusion (Toro, 2009). The effect of this is that major discontinuities
in a river (such as waterfalls) are gradually smoothed away during
upstream propagation. To address this Campforts and Govers have
developed a finite volume method with flux limiting (Sweby, 1984).
This permits accuracy equal or greater than a second-order method
in smooth regions and first-order accuracy in the proximity of sharp
discontinuities (Campforts and Govers, 2015). A model based on this
algorithm has been implemented in Matlab (Campforts et al., 2017).
Though this model could be accelerated using the methods described
here, I refrain from doing so to simplify the presentation. It should
be noted that in the parameter searches that motivate this work
rapid exploration of the parameter space is often paramount. This
can be achieved by intentionally using simple, fast models, even at
the expense of some accuracy. Once the general shape of parameter
space is known, it can be refined with more accurate models, which
are generally slower.

3. Results and discussion

Fig. 6 shows the aggregate of the results of the tests below. For
the larger grid size, the new algorithm runs 13 × faster than the B&W
serial implementation on a CPU and 43× faster on a GPU. The per-
formance details of each implementation are discussed below. Note
that the ranges of values along the x-axes in the figures are different
in each of the two panels.

3.1. Serial implementations

Fig. 7 compares the wall-times of the B&W and RB implementa-
tions. These serial implementations differ only in whether or not a
stack or a queue is used. Note that for the 10002 grid, the RB imple-
mentation is slightly faster, but that it is slower for the 10,0002 grid.
This indicates that for most models using a breadth-first traversal
should have a negligible impact on speed versus using a depth-
first traversal. As we will see, a breadth-first traversal gives shorter
wall-times when parallelism is used.

Fig. 7 also shows that the majority of the wall-time (an aver-
age of 75%) is consumed by the erosion function. Optimizing this is
therefore key to improving the efficiency of both algorithms.
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Fig. 7. Timing comparisons for the B&W and RB (serial) implementations.

3.2. CPU parallel implementations

The hour-plus wall-time of the serial implementations demon-
strates the need for parallelism. Since the erosion function takes the
majority of the wall-time, parallelizing it is a good place to start.
Doing so reduced its wall-time by 75% and reduced the wall-times of
both algorithms to 10 s for the 10002 grid and 1200 s for the 10,0002

grid, a 66% reduction versus serial performance.
To improve on this, I parallelized all the steps of the algo-

rithms and removed synchronization barriers (discussed earlier),
this further halved the wall-times. I then parallelized the construc-
tion of the queue/stack (Step4_GenerateOrder) in B&W by using
OpenMP tasks to avoid explicit stack construction, but this did
not lead to better performance. Performance gains were possi-
ble in the RB algorithm by giving each thread its own private
queue in Algorithm 3. Passing this private queue onward to sub-
sequent steps allows several stages of the algorithm to proceed
independently without any synchronization. Timing comparisons of
the parallel implementations of the two algorithms are shown in
Fig. 8.

3.3. GPU implementation

OpenACC was used, in conjuction with the PGI compiler, to build
a GPU implementation of the RB algorithm. In the implementation,
Step 4: Generate Order was parallelized by treating the variable
nqueue in Algorithm 3 as atomic (see Section 2.3) using a limited
number of threads to avoid contention. Alternative designs either did
not show a significant speed-up or yielded more complex code.

Fig. 9 shows the results. For the smaller grid, the GPU runs no
faster than the RB+PQ implementation; for the larger grid, the GPU
gives a 3 × speed-up. The between the two input sizes depicted in
Fig. 9 is notable. A 100× increase in the grid size caused the RB+PQ
implementation to take 100× longer to complete; in contrast, the
RB+GPU implementation took only 28× longer. The implementa-
tion scales sublinearly. Fig. 10 illustrates this. In each region the
algorithm’s wall-time scales as O(Nx). From left to right, the linear-fit
values of x are 0.33, 0.16, 0.42, and 0.92.

The GPU has other advantages. Its unused compute power can be
used to simultaneously process other models. In multi-GPU systems
such as Summit, this means many model realizations can be carried
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Fig. 8. Timing comparisons for the parallel CPU implementations (B&W+PI, RB+PQ).
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Fig. 9. Timings for the RB+GPU implementation.

out in a short time. GPUs also tend to be more energy-efficient than
CPUs, so the net energy, environmental, and monetary costs of doing
a given calculation are reduced.

3.4. Future improvements

There are still opportunities to improve GPU performance. Step 4:
Generate Order is difficult to parallelize because memory is accessed
in a non-contiguous fashion and so little computation is done. I
have handled this in my implementation by using a small number
of threads to atomically handle the queue. Improved atomic perfor-
mance in forthcoming hardware will accelerate this strategy. Future
compiler improvements may accelerate the existing implementa-
tions and allow new strategies to be used, such as methods based
on stream compaction (Belova and Ouyang, 2017). Alternatively, at
the expense of more difficult, machine-specific code, CUDA, a GPU-
specific language, could be used to better leverage the hardware.

4. Conclusions

The foregoing has detailed algorithmic and methodological
approaches to accelerating the modeling of landscape evolution. On
the CPU, the resulting parallel implementation runs in less than a

third the time of the fastest B&W implementation. On the GPU, the
implementation runs 43× faster than the serial implementation of
the B&W algorithm, 9× faster the best parallel B&W implementation,
and scales sublinearly with input size.

My ongoing work focuses on extending the algorithm to multi-
GPU environments in order to efficiently perform the large numbers
of forward solutions that are necessary for inverse problems or sen-
sitivity analysis; working to develop the multiple flow direction
algorithm suggested earlier in this paper; and using the GPU-specific
language CUDA to develop an implementation that, though less
user-friendly, will run even faster.

Complete source code and tests are available at https://github.
com/r-barnes/Barnes2019-Landscape and on Zenodo (Barnes, 2019).
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